2 SEM TDC CHM M 1

2013

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION-I

(Physical Chemistry)

(Marks: 26)

1. Choose the correct answer:

 $1 \times 3 = 3$

- (a) A thermodynamic state function is a quantity
 - (i) used to determine heat changes
 - (ii) whose value is independent of path

P13-2000/1098

(Turn Over)

(3)

pressuredetermine to

(iii) used volume work

depends

value (iv) whose

temperature only

The enthalpy of combustion of carbon is _394 kJ mol⁻¹. The heat evolved in the combustion of 6.02×10^{22} atoms of carbon is

(i) 3940 kJ

(ii) 394 kJ

(iii) 39·4 kJ

(iv) 0.394 kJ

The equilibrium constant for a reaction is 10. The value of standard free energy, ΔG° is

(i) -5.7 kJ mol^{-1}

(ii) 5.7 kJ mol⁻¹

(iii) -57 kJ mol⁻¹

(iv) 57 kJ mol^{-1}

UNIT-I

Answer any two of the following:

 $6 \times 2 = 12$

2

Explain why we have to define the heat **2.** (a) constant capacity of gases under volume constant and pressure condition.

P13-2000/1098

(Continued)

Thermodynamically show that for an ideal gas $C_P - C_V = R$.

Differentiate between extensive and intensive property with one example.

3. (a) What is Joule-Thomson effect? Prove that this effect is isoenthalpic.

Deduce a relation between temperature and volume for an adiabatic expansion of an ideal gas.

(c) One mole of an ideal $(\overline{C}_V = 12.55 \text{ J K}^{-1} \text{ mol}^{-1})$ at 300 K is compressed adiabatically and reversibly to one-fourth of its original volume. What is the final temperature of the gas?

(a) Derive Kirchhoff's equation.

' (b) State and explain Hess's law with one suitable example.

The bond enthalpy of $H_2(g)$ 436 kJ mol^{-1} and that of $N_2(g)$ is 941.3 kJ mol⁻¹. Calculate the average bond enthalpy of an N-H bond in ammonia. Given, $\Delta H_f^{\circ}(NH_3) = -46.0 \text{ kJ mol}^{-1}$

P13-2000/1098

(Turn O

3

1

2

UNIT-II

Answer any two of the following:

51/2×2=11

11/2

3

1

- 5. (a) Deduce an expression for the entropy changes associated with the changes in temperature and pressure of an ideal gas.
 - (b) The enthalpy of vaporization of water is 40.8 kJ mol⁻¹ at 373 K. Calculate the change in entropy of the transition of water to steam at 373 K.
- 6. (a) Derive an expression for entropy increase during isothermal mixing of two ideal gases.
 - (b) Discuss the criteria of spontaneity in terms of Gibbs' free energy.
 - (c) For a reaction, $\Delta H = 10.5 \times 10^3 \text{ J mol}^{-1}$ and $\Delta S = 31 \text{ JK}^{-1} \text{ mol}^{-1}$ at 298 K. Decide whether the reaction is spontaneous or not at this temperature. 1½
- 7. (a) State and explain the third law of thermodynamics. How can it be verified experimentally? 2+2=4
 - (b) Prove that

$$\left(\frac{\partial G}{\partial P}\right)_T = V \qquad \qquad 1\frac{1}{2}$$

P13-2000/1098

(Continued)

SECTION—II (Inorganic Chemistry) (Marks: 27)

3. Choose the correct answer:

1×3=3

- (a) $B_n H_{n+6}$ belongs to
 - (i) closo
 - (ii) nido
 - (iii) arachno
 - (iv) hypo
- (b) The number of five-membered faces present in fullerene is
 - (i) 12
 - (ii) 20
 - (iii) 25
 - (iv) 36
 - (c) The metal oxide which cannot be reduced by carbon is
 - (i) ZnO
 - (ii) PbO
 - (iii) Fe₂O₃
 - (iv) Cr2O3

P13-2000/1098

(1

UNIT-I

	۸п۹	swer any three of the following:	3×3=9
9	(a)	Explain the formation of 3c-2e boranes.	
	(b)	What are phosphazenes? H (NPCl ₂) _x polymer prepared?	
	(c)	Why are noble gas compounds con in xenon? How are XeO ₃ and prepared?	3
	(d)	What are silicones? How can to prepared? What is silicone rubb	they be per? 3
	(a)	Give the structures of the follow	wing: 3
(e) Give the structures H_3PO_2 , H_3PO_4 , $H_4P_2O_7$			7
10.	Wri	te short notes on (any two):	2×2=4
	(a)	Inorganic benzene	
	(b)	Zeolite	
	(c)	Hydrazoic acid	
	(d)	Carboranes	
P13—2000/1098 (Continued)			

(7)

UNIT-II

11. Answer any three of the following: 2×3=6

- (a) Describe the changes taking place during roasting of a sulphide ore.
- Why calcium cannot be obtained by carbon reduction of CaO?
- Explain the role of solvent extraction in metallurgical process.
- What is hydrometallurgy? Where is it generally used? Give one example of hydrometallurgical process.
- (e) Reducing capabilities of elements generally decrease with increase in temperature but that carbon of increases. Why?
- 12. Describe the extraction of any two of the following: 21/2×2=5
 - (a) Molybdenum from wolfeite ore
 - Cobalt from smaltite ore
 - Vanadium from vanadinite ore

P13-2000/1098

(Turn Ov

SECTION—III

(Organic Chemistry)

(Marks : 27)

13. Choose the correct answer :

1×3=3

(a) Which of the following groups activates the benzene ring toward electrophilic substitution reaction?

(i) -NO₂

(ii) —SO₃H

(iii) —OCH3

(iv) —CHO

(b) The addition of Br₂ to cis-butene gives

(i) (+) 2,3-dibromobutane only

(ii) (-) 2,3-dibromobutane only

- (iii) racemic-2,3-dibromobutane
- (iv) meso-2,3-dibromobutane
- (c) Which of the following reacts fastest with Br₂ + anhydrous AlCl₃?

(i) Benzene

- (ii) Nitrobenzene
- (iii) Toluene
- (iv) Anisole

-2000/1098

(Continued)

14. Answer any six of the following:

2×6=12

(a) Give the mechanism of elimination of second-order on alkyl halide.

f 2

2

(b) Write the method of preparation of the following (any one):

(i) 2-Methyl propene by using chloromethyl trimethyl silane (Peterson reaction)

(ii) Alkynes by an S_N2 reaction

(c) Explain, why-

(i) R—C≡C—R gives a ketone on hydration;

(ii) electrophilic addition of Br₂ to an alkene involves bridged bromonium ion. 1+1=2

(d) Write down the product(s) obtained in the following reactions: 1+1=2

$$(i) \quad \bigcirc + \quad \bigcirc \longrightarrow ?$$

(ii) $H-C = C-H \xrightarrow{MeMgI} (A) \xrightarrow{RCHO/Et_2O} (B)$

P13-2000/1098

(Turn Over)

(e) Explain that hydroboration-oxidation takes place with anti-Markownikoff regioselectivity.

2

2

2

2

2

2

- What stereochemical products are obtained when hydroxylation via epoxidation is carried out with cis- and trans-stilbene?
- (g) A hydrocarbon which has the molecular formula C_6H_{12} was subjected to ozonolysis and it gives equimolecular quantities of ethyl methyl ketone and acetaldehyde. Assign the structure and give IUPAC name to the hydrocarbon.
- (h) How would you synthesise isoprene from acetylene?
- 15. Answer any six of the following: $2\times6=12$
 - (a) Discuss the Dieckman cyclisation reaction with mechanism.
 - (b) Show how you will prepare 1-methylcyclobutane from 1,3-dibromopropane and diethylmalonate.
 - (c) Complete the following reaction and suggest the mechanism:

$$\frac{\text{NO}_2}{\text{conc. HNO}_3 + \text{conc. H}_2\text{SO}_4} \Rightarrow 7$$

13-2000/1098

(Continued)

- (d) Compare the torsional strain in the gauche conformation of n-butane with that in the anticonformation. Draw the Newman projection of both and indicate the values of the dihedral angles between the methyl groups.
- (e) Represent axial and equatorial substituted methylcyclohexane in perspective and Newman projection. Why is equatorial substituted conformation more stable than the axial conformation?
- (f) What is aromaticity? Account for the aromatic behaviour of cyclopropenyl cation and 1,3-cyclopentadienyl anion.
- (g) Suggest reagents for the following conversions: 1+1=2

$$(i) \qquad \bigcap_{NH_2}^{CH_3} \longrightarrow \bigcap_{SO_3H}^{CH_3}$$

(h) How would you prepare styrene from benzene and mesitylene from acetone?

1+1=2

2

P13-2000/1098

2 SEM TDC CHM M 1