2015

(May)

CHEMISTRY

(Major)

Course: 607

(Spectroscopy)

Full Marks: 48 Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

1×5=5

- (a) The radiation in the wavelength range 400 nm–800 nm corresponds to
 - (i) ultraviolet
 - (ii) infrared
 - (iii) visible
 - (iv) far IR

1500/803

(Turn Over)

- (b) In order to be microwave active
 - the molecule must have permanent dipole moment
 - (ii) the dipole moment of the molecule must change during vibration
 - the polarizability of the molecule must change during vibration
 - (iv) None of the above
- (c) The multiplicity of the signals in CH₃CH₂OCH₂CH₃ in NMR spectrum is
 - (i) two triplets
 - (ii) a triplet and a quartet
 - (iii) two singlets
 - (iv) two singlets and two triplets
- (d) Which of the following solvents cannot be used in NMR spectroscopy?
 - (i) CC1₄
 - (ii) CS₂
 - (iii) CHCl₃
 - (iv) $(CCl_3)_2C = 0$

[e] In infrared spectroscopy, the pair of isomers which cannot be distinguished are

- (i) cis-trans isomers
- (ii) functional isomers
- (iii) enantiomers
- (iv) position isomers

2. Answer any five of the following:

 $2 \times 5 = 10$

- (a) The nuclei like ¹²C and ¹⁶C do not exhibit NMR spectra. Explain.
- (b) Cu⁺ ion does not show ESR spectra but Cu²⁺ ion shows EMR spectra. Why?
- (c) Explain why the intensities of Stokes lines are different from that of anti-Stokes lines.
- (d) What do you mean by a good solvent in UV spectroscopy and what is its effect on absorption maximum?
- (e) What do you mean by fundamental vibrations and overtones?
- What is mutual exclusion principle? Explain with examples.

(Continued)

tinued P15—1500/803

(Turn Over)

P15-1500/803

UNIT-I

- (a) Discuss the effect of isotopic substitution on the rotational spectra of a diatomic molecule.
 - (b) Calculate the moment of inertia of a diatomic molecule whose internuclear distance is 150 pm and reduced mass is 1.5×10^{27} kg.

UNIT-II

4. (a) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v₀ of the molecule.

Or

K³⁹Cl³⁵ has an intense line at 278 cm⁻¹ in infrared spectrum. Calculate the force constant of the molecule.

- (b) Roughly sketch the fundamental vibrations of H₂O molecule. Show how many of them are infrared-active and how many of them are Raman-active.
- (c) Discuss Fermi resonance with one example.

UNIT-III

- (a) Discuss the quantum mechanical explanation of Raman effect.
 - (b) Discuss about the rotational Raman spectrum in linear molecule.

Or

A substance shows a Raman line at 45 68 Å when the exciting line 4332 Å is used. Calculate the wavelengths of Stokes and anti-Stokes lines for the same substance when the exciting line 4036 Å is used.

(c) Write any one difference between Raman spectra and Infrared spectra.

UNIT-IV

- 6. (a) Discuss various types of electronic transition with examples.
 - (b) Explain the effects of change of solvents on $n \to \pi^*$ and $\pi \to \pi^*$ transitions.

Or

Write the selection rules for electronic transitions.

(Continued P15_1500/803

(Turn Over)

3

3

1

4

2

UNIT-V

v. (a) Discuss briefly the principle of NMR spectroscopy.

Or

What is chemical shift in NMR spectroscopy? Mention the factors that affect chemical shift. 2+2=4

of 1,2-dichloropropane and 1,3-dichloropropane. 1½+1½=3

* * *

P15-1500/803

6 SEM TDC CHM M