6 SEM TDC CHM M 1 (N/O)

2018

(May)

CHEMISTRY

(Major)

Course: 601

(Physical Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

1×5=5

- (a) Intersystem crossing refers to
 - (i) transition between two states of a system
 - (ii) radiationless transition between states of different spin multiplicities
 - (iii) transition between excited and ground states with same multiplicity
 - (iv) All of the above

8P/799

(Turn Over)

- (b) A sample of polyacrylonitrile has number average molecular weight of 106000. Its number average degree of polymerization is
 - (i) 2000
 - (ii) 1000
 - (iii) 3000
 - (iv) 200
- (c) The number of components, phases and degrees of freedom for I₂ distributed between CHCl₃ and H₂O are
 - (i) 3, 2, 2
 - (ii) 3, 2, 1
 - (iii) 3, 1, 2
 - (iv) 2, 2, 1
- (d) Which of the following is the wrong statement?
 - (i) A catalyst can start a reaction in some cases.
 - (ii) Enzymes are the examples of micro-heterogeneous catalysis.
 - (iii) Enzymes can act only in the presence of coenzymes.
 - (iv) A positive catalyst reduces the activation energy of a reaction.

8P/799

(Continued)

- (e) At absolute zero, the value of molecular partition function is
 - (i) O
 - (ii) 1
 - (iii) greater than one
 - (iv) less than zero
- 2. Answer the following questions:

 $2 \times 5 = 10$

- (a) The photochemical dissociation of gaseous HI to form normal H₂ and I₂ requires radiation of 4040 Å. Determine the molar heat of dissociation of HI.
- (b) What is glass transition temperature? How is it important?
- (c) Explain the actions of catalytic promoters and catalytic poisons.
- (d) "A mixture of Sn and Pb is used for soldering." Explain giving proper reason.
- (e) Define canonical and grand-canonical ensembles,

PLEANING THE STATE OF THE STATE

8P/799

(Turn Over)

(4)

- 3. Answer any *two* questions from the following: $3\frac{1}{2} \times 2 = 7$
 - (a) Discuss the rate expression for the reaction

$$H_2 + Br_2 \xrightarrow{hv} 2HBr$$

assuming steady-state approximation for H and Br. How would you account for the low quantum yield for this reaction?

3+1/2=31/2

(b) The decomposition of HI takes place by the following mechanisms:

$$HI + hv \rightarrow H + I$$

 $H + HI \rightarrow H_2 + I$
 $I + I \rightarrow I_2$

Deduce the expression for the rate of this reaction. What is the quantum efficiency of the reaction? $3+\frac{1}{2}=3\frac{1}{2}$

- (c) What is quantum yield of a photochemical reaction? Mention any three reasons for showing low quantum yield of a reaction. ½+3=3½
- 4. Answer any one question from the following: 5
 - (a) (i) Define weight average and number average molecular weight of a polymer sample.

8P/799

(Continued)

(ii)	Write Carothers equation. In a
	polymerization reaction, hexa-
	methylenediamine reacts with
	adipic acid in equimolar
116.50	concentration to form Nylon-6,6.
	Calculate the molecular weight of
	Nylon-6,6 when the conversion is
	90%. (Molecular weight of the
	polymer repeat unit is 226.) 1+2=3

- (b) (i) Discuss the kinetics of free radical chain polymerization.
 - (ii) Briefly discuss about living polymers.
- 5. Answer any one question from the following:
 - (a) What is acid-base catalysis? Explain the theories of acid-base catalysis with suitable examples. 1+4=5
 - (b) (i) Discuss the effect of particle size on the catalytic activity in heterogeneous catalysis.
 - (ii) What are nanocatalysts? Discuss the efficiency of metal nanoparticles in heterogeneous catalysis. 1+2=3

8P/799

(Turn Over)

3

2

5

2

(7)

- **6.** Answer any *two* questions from the following: $4\frac{1}{2} \times 2 = 9$
 - (a) What do you mean by a phase diagram?

 Draw and explain the phase diagram of a simple eutectic system.

 1+3½=4½
 - (b) Draw the phase diagram of water and lebel it. Explain it briefly giving the significance of each zone and line.

11/2+3=41/2

- (c) Derive Clausius-Clapeyron equation.

 Mention its two applications. 3½+1=4½
- 7. Answer any two questions from the following: $3\frac{1}{2}\times2=7$
 - (a) Show that the equilibrium distribution of particles following Boltzmann statistics is given by

$$\frac{n_i}{n} = \frac{g_i e^{-\beta \varepsilon_i}}{\sum g_i e^{-\beta \varepsilon_i}}$$

where $\beta = \frac{1}{kT}$.

31/2

- (b) Deduce Sackur-Tetrode equation for molar entropy of an ideal monatomic gas. 3½
- (c) What do you mean by partition function? Discuss the physical significance of partition function. Explain the effect of temperature on partition function.

 1+1½+1=3½

8P/799

(Continued)

(Old Course)

Full Marks: 48

Pass Marks: 19

Time: 3 hours

1. Choose the correct answer:

1×5=5

- (a) Photosynthesis is an example of
 - (i) phosphorescence
 - (ii) chemiluminescence
 - (iii) fluorescence
 - (iv) photosensitized reaction
 - (b) Which of the following is an example of step growth polymer?
 - (i) Polyaniline
 - (ii) Polyvinyl chloride
 - (iii) Nylon-6,6
 - (iv) Polystyrene
 - (c) The efficiency of a catalyst in catalysis depends on the
 - (i) molecular state
 - (ii) physical state
 - (iii) amount used
 - (iv) number of free valencies

8P/799

(Turn Over)

(d) The number of components, the number of phases and the number of degrees of freedom at the eutectic point of a condensed system is

(i) 1, 1, 0

(ii) 2, 3, 0

(iii) 1, 1, 1

(iv) 1, 3, 0

(e) At absolute zero, the value of molecular partition function is

(i) zero

(ii) less than zero

(iii) one

(iv) greater than one

2. Answer the following questions: $2 \times 5 = 10$

(a) What is bioluminescence? Give one example.

(b) What do you mean by degree of polymerization and extent of reaction?

1+1=2

2

(c) Explain the effect of temperature on enzyme catalysis.

2

8P/799

(Continued)

(d) Explain what is meant by incongruent melting point. Give one example of a system with incongruent melting point.

1+1=2

(e) Define molar partition function. How does it differ from molecular partition function?

1+1=2

3. Answer any two questions from the following: $3\frac{1}{2} \times 2=7$

(a) Define quantum yield of a photochemical reaction. How do you account for the low and high quantum yields in a photochemical reaction? What is the role of chlorophyll in photosynthesis? 1+2+1/2=31/2

(b) The decomposition of HI takes place by the following mechanisms:

$$HI + hv \rightarrow H + I$$

$$H + HI \xrightarrow{k_2} H_2 + I$$

$$I + I \xrightarrow{k_3} I_2$$

Show that the rate of this reaction is directly proportional to the intensity of radiation. Find the quantum yield for this reaction. $3+\frac{1}{2}=3\frac{1}{2}$

(c) What is photostationary state? Discuss the dimerization of anthracene. 1+2½=3½

8P/**799**

(Turn Over)

(Continued)

4. Answer any one question from the following:

UI

Discuss the kinetics of free radical chain length? addition polymerization. What is kinetic 4+1=5

O Define number average (\overline{M}_n) and weight of a polymer sample. weight average (M_w) molecular N

D

H measurement. Discuss the of a polymer sample by viscosity determination of molecular weight method

Answer any one question from the following:

S

Explain why enzyme catalysts are highly specific. 1%

0

Ð Derive Michaelis-Menten equation. 3½

9

Explain the following:

11/4×2=3

7.

(1) Effect of temperature on surface

(2) Efficiency of nanoparticles as reactions

catalyst

(ii) Give one example of homogeneous heterogeneous catalysis. catalysis and one example of 1+1=2

8P/799

ò Answer any two questions from following: the 416×2=9

(a) What is phase rule? Derive the phase rule thermodynamically. 1+3%=4%

(i) Draw the labelled phase diagram for water system.

(b)

Œ What is a triple point? The number component systems. Explain. although both of them are onesulphur of triple points in water and system are different 1+1%=2%

Ø Write the phase rule equation for condensed systems.

(c)

(ii) Discuss the phase diagram of a simple eutectic system. 31/2

Answer any two questions from following: the 315×2=7

(a) Define entropy Derive Boltzmann relationship between probability. thermodynamic and thermodynamic probability. 1+21/2=31/2

Deduce Sackur-Tetrode equation for molar entropy of an ideal monatomic

9

(Turn Over)

(c) (i)	Write the differences between grand canonical and microcanonical	
	ensembles.	11/2
(ii)	Calculate translational partition function of CH ₄ at 1000 K in a	
	volume of 1 litre.	. 2

* * *

8P-2500/799

6 SEM TDC CHM M 1 (N/O)