6 SEM TDC CHM M 1

2015

(May)

CHEMISTRY

(Major)

Course: 601

(Physical)

Full Marks: 48

Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

1×5=5

- (a) In photosynthesis chlorophyll acts as
 - (i) a catalyst
 - (ii) photosensitizer
 - (iii) photoinhibitor
 - (iv) None of the above

P15-1500/585

(Turn Over)

(b) PVC 13 4				
(i) chain polymer				
(ii) step polymer				
matural polymer				
(iv) copolymer				
(c) The substance that decreases the				
efficiency of a catalyst is called				
negative catalyst				
(ii) catalytic poison				
(iii) catalytic promoter				
(iv) positive catalyst				
(d) The maximum possible number of				
phases that can coexist in equilibrium				
in a two-component system is				
<i>(</i>) 1				
(ii) 2				
(m) 3				
(w) 4				
(e) The unit of molecular partition function				
is				
(i) cm ⁻¹				
(E) S ⁻¹				
(iii) JK ⁻¹ mol ⁻¹				
(w) dimensionless				

Ans	wer the following questions: 2×5=10			
(a)	the state of the s			
(b)	What is degree of polymerization? A sample of polystyrene has an average molecular weight of 104000. What is the degree of polymerization of this sample of polystyrene? 1+1=2			
(c)	What do you mean by autocatalysis? Give one example. 1+1=2			
(d)	Explain why in case of one-component system the solid-vapour and liquid-vapour curves always have a positive slope, while the solid-liquid curve may have a positive or negative slope.			
(e)	Define canonical and grand-canonical ensembles.			
	The state of the s			
Answer any two of the following questions:				
	3½×2=7			
(a)	reaction the			
	$H_2 + Br_2 \xrightarrow{hv} 2HBr$			
	assuming steady-state approximation for H and Br. How would you account for the low quantum yield for this reaction?			

P15-1500/585

(Turn Over)

(5)

- phenomenon the Discuss (b) fluorescence and phosphorescence in terms of singlet and triplet states. What is LASER? 21/2+1=31/2
- What is photostationary state? Discuss the dimerization of anthracene. $1+2\frac{1}{2}=3\frac{1}{2}$
- Answer either (a) or (b):
 - masses (1) Equal of (a) molecules with $M_1 = 9000 \,\mathrm{g \, mol^{-1}}$ $M_2 = 90000 \,\mathrm{g \, mol}^{-1}$ are Calculate the number-average and weight-average molecular weights of the polymer sample.
 - (ii) Discuss how molecular weight of a polymer can be determined from viscosity measurements.
 - (9 Explain different steps involved (b) of in the mechanism polymerization.
 - (ii) Write short notes on:
 - Living polymers
 - (2) Copolymers

11/4×2=3

5

5. Answer either (a) or (b):

(i) Explain why-(1) a catalyst cannot reaction;

- (2) a catalyst cannot affect the position of equilibrium of a
- (ii) Discuss the mechanism heterogeneous catalysis on the basis of adsorption theory.
- (b) What is enzyme catalysis? Discuss the effects of concentration, temperature and pH on the rate of enzyme catalysis. Explain why enzyme catalysts are highly specific. 1+3+1=5
- 6. Answer any two of the following questions:

41/4×2=9

3

- (1) What do you mean by condensed system? Write the phase rule equation for such systems. 1+14=114
 - (ii) Determine the number components, number of phases and number of degrees of freedom in the following equilibria: 11/4×2=3
 - (1) CaCO₃ (s) = CaO(s) + CO₂ (g)
 - (2) NH₄Cl(s) = NH₃ (g) + HCl(g);

when $p_{\rm NH_3} \neq p_{\rm HCl}$

(Turn Over)

P15-1500/585

1	andtectic changer	Draw and
(b)	What is peritectic change? explain the labelled phase	diagram of
(-)	explain the last em.	1+31/2=41/
	Na ₂ SO ₄ -H ₂ O system.	1 1

- (c) (i) Explain that azeotrope is a mixture; it is not a compound.
 - (ii) Derive Clausius-Clapeyron equation.
- 7. Answer any two of the following questions:
 - (a) Define thermodynamic probability.

 Derive Boltzmann relationship between entropy and thermodynamic probability.

 1+2½=3½
 - (b) Define partition function. Deduce the relationship between partition function and Gibbs' free energy.

 1+2½=3½
 - (c) Derive the equation applicable for the calculation of the molar entropy of an ideal monatomic gas.

* * *

P15—1500/585

6 SEM TDC CHM M 1