Total No. of Printed Pages-12

4 SEM TDC CHM M 1 (N/O)

2018

(May)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The number of electrons involved in the reaction when one faraday of electricity is passed through the electrolyte is
 - (i) 12×10^{46}
 - (ii) 96500
 - (iii) 6×10²³
 - (iv) 8×10^{16}

8P/683

(Turn Over)

- (b) The increase in the molar conductivity of HCl with dilution is due to
 - (i) decrease in interionic forces
 - (ii) increase in self-ionization of water
 - (iii) hydrolysis of water
 - (iv) decrease in self-ionization of water
- (c) For an electrolytic solution of $0.05 \text{ mol } l^{-1}$, specific conductivity is 0.0110 S cm^{-1} . The molar conductivity (in $\text{S cm}^2 \text{ mol}^{-1}$) is
 - (i) 0.055
 - (ii) 55
 - (iii) 220
 - (iv) 0.22
- (d) The potential of hydrogen electrode having pH = 10 is
 - (i) 0.592 V
 - (ii) 0.0592 V
 - (iii) 0.592 V
 - (iv) None of the above

(e) For the reaction between CO₂(g) and graphite

 $CO_2(g) + C(s) \rightarrow 2CO(g)$

 $\Delta H = +170 \cdot 0 \text{ kJ}$ and $\Delta S = 170 \text{ JK}^{-1}$. The reaction is spontaneous at

- (i) 1200 K
- (ii) 900 K
- (iii) 500 K
- (iv) 298 K
- 2. Answer any five questions from the following: 2×5=10
 - (a) Describe any two factors upon which the transport number of an ion depends.
 - (b) Distinguish a reversible cell from an irreversible cell.
 - (c) Explain how the conductance of an electrolyte depends upon the viscosity of the medium.
 - (d) For the electrochemical cell

$$2Ag^+ + Zn \rightleftharpoons Zn^{2+} + 2Ag$$

 E° cell is 1.56 V at 25 °C. Calculate the equilibrium constant of the reaction.

(Continued 8P/683

(Turn Over)

- (e) Prove that for a system, decrease in the Helmholtz free energy function at constant temperature and volume represents the maximum amount of work obtainable from the system.
- (f) One mole of an ideal gas expands isothermally and reversibly from 5 dm³ to 10 dm³ at 300 K. Calculate ΔG and ΔA .

UNIT-I

- 3. Answer any two of the following questions:
 41/2×2=9
 - (a) For one mole of an ideal gas, prove that $\overline{\Delta S} = \overline{C}_p \ln \frac{T_2}{T_1} R \ln \frac{P_2}{P_1}$ 4½
 - (b) (i) Prove that $\left(\frac{\partial V}{\partial T} \right)_P = -\left(\frac{\partial S}{\partial P} \right)_T$ 2½
 - (ii) State and explain Nernst's heat theorem.
 - (c) (i) For a reaction $\Delta G = -a + bT \ln T$, where a and b are constants. Express ΔH as a function of T. 25

(ii) Calculate ΔG for the formation of H_2O (I) from the elements at 25 °C, $\Delta H_{f(H_2O)}^{\circ} = -286$ kJ. Entropies of H_2 (g), O_2 (g) and H_2O (l) are respectively 130.6 JK⁻¹ mol⁻¹, 205.0 JK⁻¹ mol⁻¹ and 70.3 JK⁻¹ mol⁻¹.

UNIT-II

4. Answer any two of the following questions:

7×2=14

2

3

3

- (a) (i) What is transport number? Derive the relation between ionic conductance and transport number. 1+3=4
 - (ii) The equivalent conductance of a very dilute solution of NaNO₃ at 18 °C is 210.4 ohm⁻¹ cm². If the ionic conductance of NO₃ ion in the solution is 122·14 ohm⁻¹ cm², calculate the transport number of Na⁺ ion in the solution.
- (b) (i) Represent the variation of equivalent conductances of KCl and CH₃COOH with dilution graphically and give an explanation for such variation.
 - (ii) Describe briefly Wien effect and Debye-Falkenhagen effect.

(Turn Over)

(Continued 8P/683

8P/683

(Continued 8P/683

(Turn Over)

C $^{^{\circ}}_{\frac{1}{2}\text{Ba(NO_3)}_2} = 135.04 \times 10^{-4} \,\Omega^{-1} \,\text{m}^2 \,\text{equiv}^{-1}$ $^{^{\circ}}_{\frac{1}{2}\text{H}_2\text{SO}_4} = 429 \cdot 60 \times 10^{-4} \,\Omega^{-1} \,\text{m}^2 \,\text{equiv}^{-1}$ (ii) Calculate the equivalent and molar $^{\circ}_{\text{HNO}_3} = 421 \cdot 24 \times 10^{-4} \, \Omega^{-1} \, \text{m}^2 \, \text{equiv}^{-1}$ State and explain Kohlrausch's law of independent migration of ions. conductances of aqueous BaSO₄ solution at infinite dilution. Given, w

UNIT-III

Ċ Answer any two of the following questions:

(a)

Discuss any two types of electrode

(n) Write the difference used in galvanic cells. electrode concentration cell and electrolytic concentration cell. between

(i) Discuss how the pH of a solution quinhydrone electrode. can be measured with the help of a

(b)

Describe generated in a hydrogen-oxygen fuel cell. how the e.m.f.

(II)

Derive a relation between the reaction. equilibrium constant of a electromotive force and

(c)

(ii) Aluminium aluminium metal. The cathode reaction is electrolysed at 1000 °C to furnish oxide

 $Al^{3+} + 3e^- \rightarrow Al$

this method. to produce 5.12 kg of aluminium by Calculate the amount of electricity

Scanned by CamScanner

(Old Course)

Full Marks: 48 Pass Marks: 19

Time: 3 hours

1. Select the correct answers:

1×5=5

- Which of the following ions possesses maximum ionic mobility?
 - (i) Nat
 - (ii) K+
 - (iii) H+
 - (iv) OH
- (b) The unit of cell constant is
 - (i) ohm⁻¹ cm⁻¹
 - (ii) cm⁻¹
 - (iii) ohm -1
 - (iv) ohm-1 cm
- (c) Electrode potential of a standard hydrogen electrode is
 - (i) 1.0 V
 - (ii) 0 V
 - (iii) 1.0 V
 - (iv) 0.5 V

8P/683

(Continued) 8P/683

(d)	Which of the following is an example or reversible cell?	
	reversible cell?	f

- (i) Fuel cell
- (ii) Dry cell
- (iii) Lead storage cell
- (iv) Electrolytic cell
- The value of activity coefficient for an ideal gas is
 - (i) 1
 - (ii) > 1
 - (iii) < 1
 - (iv) None of the above
- 2. Answer the following questions: 2×5=10
 - (a) Explain why H+ and OHexceptionally high ionic mobilities in aqueous solution.
 - State Kohlrausch's law. Why is this law applicable only at infinite dilution? 1+1=2
 - Explain how electrode potential of an (c) electrode is measured.
 - Explain why quinhydrone electrode is (d) not suitable to measure the pH of strongly basic solution.
 - Define chemical potential. What is its physical significance? 1+1=2

(Turn Over)

2

2

2

(10)

3.	Answer any	two of the	following q	uestions	:

7×2=14

- (a) (i) Define transference number of ions.

 Derive the relationship between transference number and ionic velocities.

 1+3=4
 - (ii) Discuss moving boundary method for determination of transference number of ions.
- (b) (i) Explain Debye-Hückel concept of ionic atmosphere. Explain the variation of molar conductance with concentration for strong electrolytes with the help of asymmetry effect.

2+2=4

3

(ii) What do you mean by conductometric titration? Discuss the advantages of conductometric titration over volumetric titration.

1+2=3

- (c) (i) State and explain Walden's rule.
 Why is this rule not valid for small ions?

 2+1=3
 - (ii) Explain how solubility and solubility product of a sparingly soluble salt can be measured from conductometric measurements.

(11)

(iii) The conductivity of a decinormal solution of KCl at 298 K is 0.0112 ohm⁻¹ cm⁻¹. The resistance of the cell containing the solution was found to be 55 ohm. Calculate the cell constant.

4. Answer any two of the following questions:

 $5 \times 2 = 10$

1

(a) What is glass electrode? Describe how it can be used to measure the pH of a solution. What do you mean by asymmetry potential of glass electrode?

1+3+1=5

3

2

- (b) (i) Derive an expression relating e.m.f. of a cell with the concentration of the reactants and products of the cell reaction.
 - (ii) A copper sulphate solution was electrolysed for one hour resulting in the deposition of 0.5 g copper on cathode. What was the current strength? (Atomic weight of Cu = 63.57 u)

(c) What are fuel cells? Draw the schematic diagram of H₂-O₂ fuel cell. Discuss how e.m.f. is generated in a H₂-O₂ fuel cell.

1+1+3=5

8P/683

(Turn Over)

8P/683

(Continued)

3

5. Answer any three of the following questions:

3×3=q

(a) With the help of Le Chatelier principle, work out the condition which would favour the maximum yield of ammonia in the reaction

$$N_2$$
 (g) + 3H₂ (g) $\rightleftharpoons 2NH_3$ (g);
 $\Delta H = -92.38 \text{ kJ}$

(b) Derive van't Hoff equation in the form

$$\frac{d(\ln k_p)}{dT} = \frac{\Delta H^n}{RT}$$

- (c) Derive Duhem-Margules equation.
- (d) Discuss the effects of temperature and pressure on chemical potential.
