2018

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic)

(New Course)

Full Marks: 80

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION—I

(Physical Chemistry)

(Marks: 26)

1. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) The enthalpy of combustion of carbon is -394 kJ mol^{-1} . The heat evolved in the combustion of 6.02×10^{22} atoms of carbon is
 - (i) 3940 kJ

(ii) 394 kJ

purgrantaide and burnels in

(iii) 39·4 kJ

(iv) 0.394 kJ

8P/670

[P.T.O.

(b) Enthalpy change of a reaction as	
(i) conditions of a reaction	Answer any two questions from
iii initial and final states of the system	my two questions no
(iii) physical states of reactants and products	
(iv) number of steps in the reaction	5. (a) Derive an expression
(c) Degree of hydrolysis of a salt of weak acid and weak base	acid and weak base
(2) increases with concentration	
(ii) decreases with concentration	(b) Explain the acidic or
is independent of concentration	and (ii) (NH ₄) ₂ SO ₄ .
(iv) None of the above	
UNIT—I	6. (a) Equimolar solution of
Answer any new of the following:	an expression rela
2. Calculate the amount of work done when a gas expands—	
(a) isothermally and reversibly from volume V_1 to V_2 ;	(b) Define buffer capacit
(b) isothermally and irreversibly from volume V_1 to V_2 .	6) 1-
From these, show that the amount of work done in a reversible process is greater than that in an irreversible process. 2+2+2=6	(c) In an aqueous solution that of (NH_4) solution. $K_b = 1.0 \times 1$
3. (a) Establish the relationship between enthalpy change and internal energy change for a gaseous reaction.	- Aller to the state of the last
change for a gaseous reaction.	7. (a) Distinguish solubility
(b) Enthalpy of formation of ethane at constant pressure is -110.46 kJ mol ⁻¹	
at 298 K. Find its value at constant volume.	(b) A dilute solution of H
(c) Differentiate between bond dissociation energy and bond energy giving	passing H ₂ S gas in th
one example.	as metal sulphides ar
The second of th	A STEEL OF THE STEEL STE
4. (a) Derive the relationship between Joule-Thomson coefficient and	(c) The solubility products
thermodynamic properties.	
	and 4×10 ⁻¹⁴ (mole L
(b) Prove that Joule-Thomson coefficient is zero for an ideal gas.	of their saturated solu
8P/670 2	8P/670
· · · · · · · · · · · · · · · · · · ·	

Unit—II	
Answer any two questions from the following :	5%*2-11
(a) Derive an expression for the pH of an aqueous solution of a salt of st acid and weak base.	rong 3%
(b) Explain the acidic or basic nature of aqueous solutions of (i) CH ₂ CO	ONa
and (ii) (NH ₄) ₂ SO ₄ .	2
6. (a) Equimolar solution of NH ₄ OH and NH ₄ Cl forms a buffer solution. D	erive
an expression relating the pH of this buffer solution with	the
concentration of its components.	2%
(b) Define buffer capacity.	1
was the second	
(c) In an aqueous solution, molar concentration of NH ₄ OH is 0 and that of (NH ₄) ₂ SO ₄ is 0.1 M. Calculate the pH of b	
solution. $K_b = 1.0 \times 10^{-5}$.	2
7. (a) Distinguish solubility product from ionic product.	1%
(b) A dilute solution of HCl contains Cu ²⁺ , Pb ²⁺ , Zn ²⁺ and Ni ²⁺ ions passing H ₂ S gas in this solution, which metal ions will be precipit	
as metal sulphides and why?	2
addition to a state of the same and the same and the same and	
(c) The solubility products of Ag ₂ CrO ₄ and AgBr are 32×10 ⁻¹² (mole I	-1)3
and 4×10^{-14} (mole L ⁻¹) ² respectively. Calculate the ratio of molar	rities
of their saturated solutions.	2
7/670 3	{ P.T.O.

(c) Classify the following by structural type : (Inorganic Chemistry) (i) B₁₀H₁₈ (Marks: 27) (ii) $B_{11}H_{13}^{2-}$ 1×3=3 8. Choose the correct answer from the following: (iii) C₂B₇H₁₂ 11/4×2=3 (a) The number of five-membered faces present in C_{60} is (d) Explain why (any two): (i) Borazine is called inorganic benzene (i) 12 (ii) Hydrazine is used as rocket fuel. (ii) 20 (iii) XeF6 cannot be stored in glass vessel. (iii) 24 1+2=3 (e) How is triphenyl phosphine prepared? Mention its two uses. (iv) 36 2×2=4 10. Write short notes on (any two): (b) Pyrosilicate contains (a) Zeolite (i) SiO₄⁴ units (b) Hydrazoic acid (ii) SiO_3^{2-} units (c) Wade's rule (iii) $Si_2O_7^{6-}$ units (iv) Si₄O₁₁ units 11. How will you obtain the following (any two)? $3 \times 2 = 6$ (c) The metal oxide which cannot be reduced by carbon is (i) ZnO (a) Nickel from pentlandite (ii) PbO (b) Chromic oxide from its ore (iii) Fe₂O₃ (c) Molybdenum from molybdenite ore (iv) Cr₂O₃ 12. Give the preparations of the following (any two): Unit-I (a) Chromyl chloride 9. Answer any three of the following: 3×3=9 (b) Ni-DMG (a) Explain the formation of 3C-2e bond in diborane (B2H6). (c) KMnO₄ 3 (b) Explain the structure of the following compounds : 13. Write a short note on (any one): 11/4×2=3 (i) XeO3 (a) van Arkel process (ii) XeF₄ (b) Zone refining 8P/670 PTO. 8P/670

1×3=3

 $(a) \bigcirc \qquad \wedge \qquad \xrightarrow{\text{AlCl}_{\mathbf{j}}} \qquad X$

In the above reaction, compound X is

(b) Which compound would give 5-keto-2-methylhexanal on ozonolysis?

(c) The product of the reaction

Ph Ph
$$\frac{1. \text{ R COOOH}}{2. \text{ H}_3\text{O}^{\oplus}}$$

is

(i) (+)-1,2-diphenylethane-1,2-diol

(ii) (-)-1,2-diphenylethane-1,2-diol

(iii) (±)-1,2-diphenylethane-1,2-diol

(iv) meso-1,2-diphenylethane-1,2-diol

15. Answer any six of the following:

×6=12

(a) Account for the following observations:

(b) 2-Bromo-2-methylbutane undergoes E2 elimination of HBr in the presence of t-BuO⁻ to give an excess of less-substituted alkene (the Hofmann product), even though the leaving group is a neutral one. Explain.

(c) Write the mechanism of the following reaction :

(d) Write two synthetic importances of Wittig reaction giving suitable example.

(e) Write a short note on Heck reaction.

(f) Write the mechanism of the following reaction:

(g) Complete the following reaction:

(h) Give examples of regioselective and stereoselective reactions.

8P/670

8P/670

[P.T.O.

16. Answer any two of the following:

- (a) Why is boat conformation of cyclohexane less stable than that of chair conformation?
- B Explain why equatorial methylcyclohexane is more stable than axial methylcyclohexane.
- 0 Complete the following reaction :

cone. H₂SO₄ A H₂/Ni B Alk KMnO₄ C

(d) Synthesize cyclopentane from a calcium salt of adipic acid

17. Answer any four of the following :

2×4=8

(a) How will you explain the directive influence of-(I) -CH=CH2;

(ii) -CC1₃ group;

when attached to benzene ring towards electrophilic substitution

0 Synthesize o-nitroaniline using sulphonation and desulphonation

(c) How would you prepare o-acyltoluene from toluene, though the o-position is a less-effective position?

(d) Classify the following compounds as aromatic, anti-aromatic and non-aromatic :

(ii) //

(m)

(e) Explain why the activating order for the following groups is

0">--0H>--0COR

2×2=4

(Old Course)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions Write the answers to the separate Sections in separate books

SECTION

(Physical Chemistry)

(Marks : 26)

Choose the correct answer from the following:

1×3×3

(a) The enthalpy of combustion of carbon is -394 kJ mol-1. The heat evolved in the combustion of 6.02×10^{22} atoms of carbon is

(i) 3940 KJ

田 394 四

(tu) 0-394 kJ

间 394 亿

(b) Enthalpy change of a reaction does not depend upon the

(i) conditions of a reaction

(ii) initial and final states of the system

(iii) physical states of reactants and products

(w) number of steps in the reaction

(c) At equilibrium, Gibbs free energy (AG)

(i) is >0

Ē 15 < 0

Œ is zero

(iu) depends upon reaction

9

7. (a) Distinguish between Helmholtz free energy and Gibbs free energy. Discuss the criteria of spontaneity in terms of Gibbs free energy. 2+11/4=31/4 6×2=12 Answer any two of the following: (b) For the reaction $2A+B\rightarrow C$ at 298 K, $\Delta H=400~{\rm kJ~mol}^{-1}$ and 2. Calculate the amount of work done when a gas expands- $\Delta S = 0.2 \text{ kJ K}^{-1} \text{ mol}^{-1}$. At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature (a) isothermally and reversibly from volume V_1 to V_2 ; (b) isothermally and irreversibly from volume V_1 to V_2 . From these, show that the amount of work done in a reversible process is SECTION-II greater than that in an irreversible process. (Inorganic Chemistry) (Marks : 27) 3. (a) Establish the relationship between enthalpy change and internal energy 2 8. Choose the correct answer from the following: change for a gaseous reaction. (b) Enthalpy of formation of ethane at constant pressure is $-110.46~\mathrm{kJ~mol}^{-1}$ (a) The shape of XeF4 molecule is at 298 K. Find its value at constant volume. (i) tetrahedral (c) Differentiate between bond dissociation energy and bond energy giving (ii) octahedral (iii) square plannar one example. (iv) trigonal 4. (a) Derive the relationship between Joule-Thomson coefficient and (b) In Ni(CO)4, the oxidation state of nickel is thermodynamic quantities. 3 (b) Prove that Joule-Thomson coefficient is zero for an ideal gas. (ii) +3 (iii) +2 IJNIT-II (iv) 0 Answer any two questions from the following: (c) The metal which cannot be extracted by carbon reduction process is 5. (a) Deduce an expression for entropy increase during the isothermal mixing of two ideal gases. (b) Enthalpy of fusion of ice is 6.025 kJ mol⁻¹. Calculate the entropy change (iii) Pb when 9 g ice melts into water at 273 K. (iv) Ag 2 6. (a) Deduce the following relation : 9. Answer any three of the following: 3×3=9 (a) Give the method of preparation and explain the structure of borazine. 1+2-3 (b) Explain how the third law of thermodynamics can be used for the evaluation of absolute entropy of a substance. 31/2 (b) Explain the bonding structure of diborane (B2H6). 8P/670 8P/670 P.T.O.

(i) XeF₄; 11/4×2=3 (Marks : 27) (ii) XeOF₄. 1+1+1=3 12. Choose the correct answer from the following: (d) Give the structures of the following: H₃PO₂, H₃PO₄, H₄P₂O₇ (a) Which of the following is used for the conversion of 2-hexyne into trans-hexene-2? (e) Give one method of preparation, chemical property and use of hydrazoic 1+1+1=3 (i) H2 / Pd / BaSO4 (ii) Li or Na / Liq. NH3 (iii) NaBH₄ / CH₃OH 2×2=4 10. Write short notes on (any two) : (îv) LiAlH₄ (b) Hydroboration of propene forms (a) Fullerene (C₆₀) (i) propan-1-ol (b) Tetrasulphur tetranitride (S4N4) (ii) propane-1,2-diol (iii) propan-2-ol (c) Wade's rule (iv) 1,2-diacetoxy mercury propane UNIT-II 3×2=6 11. (a) How will you obtain the following (any two)? In the above reaction, compound X is (1) Chromic oxide from its ore (ii) Nickel from pentlandite (iii) Manganese from pyrolusite 2×2=4 (b) Write short notes on (any two): 13. Answer any six of the following: (i) van Arkel process (ii) Hydrometallurgy (a) Addition of HBr to 3,3-dimethyl-but-1-ene gives isomeric alkyl halides. (iii) Carbon reduction Explain. (b) Addition of bromine in CCl₄ to cis-2-butene gives (±)-2,3-dibromobutane 1 (c) Complete the following reaction : while that for trans-2-butene gives meso-2,3-dibromobutane. Explain this $Mn_3O_4 + Al \longrightarrow ? + ?$ with mechanism. 8P/670 12 8P/670 13 [P.T.O.

(c) Discuss the structure of-

SECTION—III
(Organic Chemistry)

- (c) Identify X, Y and Z in the following synthetic reaction scheme : $\text{CH}_3 - \text{C} = \text{CH} \frac{\text{i. NaNH}_2}{\text{ii. CH}_3 \text{CH}_2 - \text{Br}} \times \frac{\text{H}_2/\text{Pd} - \text{BaSO}_4}{\text{Pd}_2 - \text{BaSO}_4} \times \frac{\text{Alk. KMnO}_4}{\text{Alk. KMnO}_4} \times Z$
- (d) Write two synthetic importances of Wittig reaction giving suitable
- (e) Prepare n-pentane with the help of Corey-House synthesis.
- (f) X is an alkene and on ozonolysis, it gives a mixture of acetaldehyde and acetone as a product. Identify X and write down the reactions.
- (g) Complete the following reaction and suggest the mechanism:

$$CH_3 \longrightarrow CH_2 \longrightarrow Br \longrightarrow C_2H_5OH$$

$$CH_2 \longrightarrow CH_2 \longrightarrow CH_3$$

- (h) Give evidences to show that bromination of cis- and trans-butene-2 is stereoselective.
- 14. Answer any three questions from the following :

2×3=6

- (a) Draw the energy profile for the conformations of cyclohexane. Why is boat conformation less stable than chair conformation?
- (b) Synthesize cyclopentane starting from diethyladipate.
- (c) "t-butyl cyclohexane exists 100% in equatorial conformation." Explain.
- (d) Define angle strain. Calculate the angle strain for cyclobutane ring.
- 15. Answer any three from the following:

2×3=6

SPALSE

(a) Classify the following compounds as aromatic, anti-aromatic or non-aromatic:

8P/670

aromatic electrophilic substitution? -сосн₃, -сн₃, -осн₃, -см

(b) Which of the following groups are o-/p- and m-directing towards

(c) Complete the following reaction and suggest the mechanism :

(d) Arrange the following compounds in order of increasing tendency to undergo electrophilic aromatic substitution reaction with proper explanation:

2 SEM TDC CHM M 1 (N/O)